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Debdatta Halder1, Rony Chanoch-Myers1, Julie Laffy1, Michael Mints1,10, Adi Wider1, 
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Talia Golan11,12, Amit Tirosh12,13, Mario L. Suvà6,7, Sidharth V. Puram4,14 & Itay Tirosh1 ✉

Each tumour contains diverse cellular states that underlie intratumour heterogeneity 
(ITH), a central challenge of cancer therapeutics1. Dozens of recent studies have begun 
to describe ITH by single-cell RNA sequencing, but each study typically profiled only a 
small number of tumours and provided a narrow view of transcriptional ITH2. Here we 
curate, annotate and integrate the data from 77 different studies to reveal the patterns 
of transcriptional ITH across 1,163 tumour samples covering 24 tumour types. Among 
the malignant cells, we identify 41 consensus meta-programs, each consisting of dozens 
of genes that are coordinately upregulated in subpopulations of cells within many 
tumours. The meta-programs cover diverse cellular processes including both generic 
(for example, cell cycle and stress) and lineage-specific patterns that we map into 11 
hallmarks of transcriptional ITH. Most meta-programs of carcinoma cells are similar 
to those identified in non-malignant epithelial cells, suggesting that a large fraction of 
malignant ITH programs are variable even before oncogenesis, reflecting the biology 
of their cell of origin. We further extended the meta-program analysis to six common 
non-malignant cell types and utilize these to map cell–cell interactions within the 
tumour microenvironment. In summary, we have assembled a comprehensive pan- 
cancer single-cell RNA-sequencing dataset, which is available through the Curated 
Cancer Cell Atlas website, and leveraged this dataset to carry out a systematic 
characterization of transcriptional ITH.

ITH is a fundamental property of tumours that is driven by genetics, 
epigenetics and microenvironmental influences, and is central to treat-
ment failure, metastasis and other cancer phenotypes1. Single-cell 
RNA sequencing (scRNA-seq) efficiently enables the characteriza-
tion of ITH, and has seen a rapid expansion of its use across virtually 
all common cancer types2. One emerging concept from previous 
scRNA-seq studies is the existence of ITH ‘expression programs’, 
consisting of sets of dozens of genes with coordinated variability in 
their expression across malignant cells within a given tumour. In mela-
noma, a skin-pigmentation program driven by MITF and an epithelial– 
mesenchymal transition (EMT)-like program associated with AXL var-
ied within individual tumours and had important functional conse-
quences3,4. In glioblastoma, four expression programs were identified 
as a central source of transcriptional heterogeneity5. In head and neck 
squamous cell carcinoma (HNSCC), EMT-like and epithelial senescence 
(EpiSen) programs were identified and shown to affect the likelihood 

of metastasis and drug responses6,7. A stress-response program was 
found in several cancer types with important functional implications8.

Importantly, similar ITH programs are identified across tumours of 
the same cancer type, and in some cases even across different cancer 
types7,8. These similarities suggest that ITH expression programs reflect 
fundamental aspects of tumour biology. We therefore seek to identify 
the consensus among related ITH programs from different tumours, 
which we denote as meta-programs (MPs).

High expression of any particular MP may be considered as defining 
a cellular state. However, it is important to note that MPs tend to be 
limited to dozens of genes whose expression is superimposed on the 
cells’ baseline expression profiles and therefore reflect a relative cel-
lular state. For instance, two subpopulations of cells from two distinct 
tumours may upregulate the same MP (for example, of cell-cycle genes) 
while retaining the extensive expression differences between these 
two tumours (for example, due to unique driver mutations). These two 
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subpopulations would be in a different global cellular state (reflecting 
the tumour identity) but in the same relative cellular state (reflecting 
the activation of a particular MP). In this work we focus primarily on 
relative cellular states by defining the expression programs (and MPs) 
of each subpopulation of cells relative to the other cells from the same 
tumour, hence highlighting the patterns of intratumour rather than 
intertumour heterogeneity.

The functional and clinical significance of MPs identified previously 
and the emerging view that MPs explain a large fraction of expression 
ITH raises the need to comprehensively define the MPs in cancer and 
understand their functions. We previously profiled 198 cancer cell lines 
by scRNA-seq and uncovered 12 in vitro MPs7. Another recent study 
analysed scRNA-seq data for 62 primary tumours from several cancer 
types and identified 16 MPs9. Here we aim to markedly expand this 
analysis by integrating scRNA-seq datasets across 77 studies that pro-
filed more than a thousand patient samples from diverse cancer types. 
We define MPs in malignant and in non-malignant cells and investigate 
their functions, context specificity and interactions.

Curation of cancer scRNA-seq datasets
To systematically define cancer MPs (Fig. 1a and Methods), we searched 
for and prioritized all studies that reported scRNA-seq data for human 
tumours. We added unpublished datasets on neuroendocrine tumours, 
head and neck cancer and schwannoma. Finally, we incorporated 
selected datasets for mouse models or cell models. Altogether we 
obtained data from 77 studies, encompassing 1,456 samples covering 
24 cancer types and 2,591,545 cells (Supplementary Table 1).

We used two complementary approaches to annotate cells from each 
dataset. First, we assigned cells to 38 distinct cell types, while ensur-
ing expression of canonical cell-type markers, and excluding dubious 
clusters and apparent doublets (Fig. 1b, steps 1 and 2, and Supplemen-
tary Table 1). Second, we inferred copy-number alterations (CNAs) 
from the gene expression profiles, and assigned cells as malignant or 

non-malignant3 (Fig. 1b, step 3). Notably, 67% of carcinoma samples 
appear to contain non-malignant epithelial cells, such that an epithelial 
assignment is not sufficient to define cells as malignant. Cells with bor-
derline CNA signals were excluded from further analysis as they prob-
ably reflect doublets or low-quality data. Overall, we defined 686,690 
high-confidence malignant cells and 1,199,312 non-malignant cells.

Owing to the importance of a large and consistently annotated com-
pendium, we provide all data at the Curated Cancer Cell Atlas (3CA; 
https://weizmann.ac.il/sites/3CA). 3CA provides the original datasets, 
the cell annotations, inferred CNAs, uniform manifold approximation 
and projection (UMAP) plots, associated statistics and other advanced 
analyses described below and in upcoming publications. We aim to 
continuously expand 3CA with new datasets and functionalities.

Defining and annotating MPs
Next, we utilized 3CA to comprehensively characterize ITH among 
malignant cells (Fig. 1a). The diverse methodologies of the curated 
studies pose a challenge for analysing them collectively, and although 
computational methods can improve data integration and reduce batch 
effects, they cannot fully distinguish between technical and biological 
variability. Importantly, however, as our primary interest is in variabil-
ity within individual tumours (rather than between tumours), direct 
integration of datasets is not required for our analyses. Thus, instead of 
integrating datasets, we defined expression programs that vary within 
each tumour and subsequently compared the resulting ITH programs 
(sets of correlated genes) across tumours from all studies. Although 
primary expression data suffer from prominent batch effects, the ITH 
programs defined from comparisons within the same batch are less 
sensitive to batch effects and thereby recover high similarities across 
studies (Supplementary Fig. 1).

For each tumour, we utilized non-negative matrix factorization 
(NMF) to characterize the ITH programs that vary among its malignant 
cells, each summarized by its top-scoring 50 genes. NMF was applied 
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CNAs (top). Panel a designed by T. Bigdary.
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with multiple parameter values (K = [4–9]) and the programs that were 
consistently identified in a tumour were denoted as robust (Methods). 
Overall, we identified 5,547 robust malignant NMF programs (Sup-
plementary Table 2).

To identify recurrent patterns of ITH, we clustered the robust NMF 
programs by their fractions of shared top genes (Supplementary Fig. 1), 
and filtered out programs that were associated with low quality or 
doublets. This resulted in 41 clusters of programs (Fig. 2 and Supple-
mentary Table 2). All clusters were derived from several studies and 83% 
of them were derived from several cancer types. The clusters covered 
66% of all robust NMF programs, indicating that most expression ITH 
reflects recurrent patterns that may be described by MPs. Thus, for 
each cluster, an MP was defined as the set of genes most commonly 

shared between programs from that cluster (Methods). Of all malig-
nant cells, 54% were significantly enriched for at least one MP. Similar 
results were obtained with an alternative computational approach 
(Methods and Supplementary Fig. 2). MPs were detected comparably 
across scRNA-seq platforms, and included both highly expressed and 
non-highly expressed genes (Supplementary Fig. 3).

MPs were annotated on the basis of their functional enrichments 
(Extended Data Fig. 1 and Supplementary Table 3), and MPs with related 
functions were manually grouped into 11 MP families (Fig. 2a). The 41 
MPs and their context specificity are described briefly below and in 
detail in Supplementary Note 1. Nine of the MPs were similar to those 
seen in vitro7, and 16 were similar to those from a smaller tumour 
cohort9, whereas 21 were new (Supplementary Table 4). Note that the 
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identification of an MP in a certain tumour does not imply overall high 
MP expression but rather that malignant cells with high and those with 
low MP expression coexist within that tumour.

The most broadly identified MP families were associated with cell 
cycle (MP1–4), stress or hypoxia (MP5–7), and mesenchymal (MES) 
or EMT-like states (MP12–16). These MPs relate to core cellular pro-
cesses and to metabolism (Supplementary Table 5). Several MPs within 
each of these families highlight variation in the associated processes. 
For example, apart from the canonical G2/M and G1/S cell-cycle MPs 
(MP1 and MP2, respectively), two less frequent MPs consisted mostly 
of cell-cycle-related genes but were specifically enriched with genes 
encoding HMG-box proteins (MP3) or chromatin regulators (MP4). 
Among mesenchymal or EMT-like MPs, variants differ in their cancer 
type specificity, and a ‘hybrid’ program (MP14) includes both mesen-
chymal and epithelial markers.

MPs with intermediate frequency mostly resembled known ITH pat-
terns (protein regulation, interferon response, EpiSen or cilia) but also 
included MPs that to our knowledge were not described previously as 
heterogeneous in tumour scRNA-seq datasets, including MYC targets 
(MP20). MPs with low frequencies (<1% of NMF programs) were pri-
marily not described previously, to our knowledge, highlighting the 
increased sensitivity in detecting recurrent ITH programs with a large 
and diverse compendium. Many low-frequency MPs were enriched 
with functional annotations linked to a specific tissue or lineage (for 
example, brain or blood related), which we grouped together in an MP 
family denoted as lineage-related.

Regulation of MPs
To uncover MP regulators, we applied SCENIC to all tumour samples. 
SCENIC integrates scRNA-seq data with known protein–DNA inter-
actions to infer the regulons of transcription regulators10. We then 
searched for inferred regulons that correlate with MP expression across 
many samples (Extended Data Fig. 2 and Supplementary Table 6). This 
approach identified expected regulators (for example, E2F transcrip-
tion factors as regulators of cell-cycle MPs), and many putative regula-
tory interactions, such as GRHL1 regulating EpiSen (MP19).

Next, we explored the genetic regulation of MPs both within and 
across tumours. Within tumours, we investigated how often MP expres-
sion varies between genetically distinct subclones. We identified 
genetic subclones from inferred CNA profiles within 16% of the tumours, 
typically with 2–3 subclones per tumour. Only 24% of the subclones 
were associated with significantly high or low expression of at least one 
MP, suggesting that MPs do not primarily reflect genetic subclones and 
often reflect non-genetic plasticity (Extended Data Fig. 3).

Across tumours, we investigated whether MP expression is associated 
with particular mutations or CNAs. As only few tumours were profiled 
by both scRNA-seq and whole-exome or whole-genome sequencing, 
we turned to bulk data from The Cancer Genome Atlas (TCGA), thereby 
extending the analysis to thousands of genetically annotated tumours, 
but limiting the analysis to a tumour’s average MP expression. We found 
many associations between MP expression and specific mutations or 
CNAs (Extended Data Fig. 4 and Supplementary Table 7). The strong-
est associations include high expression of cell-cycle MPs in tumours 
with RB1 and TP53 mutations. Another strong association was found 
in kidney clear cell carcinoma (KIRC) between the glutathione MP and 
several genetic features including lack of VHL and PBRM1 mutations.

Several genetic associations were observed for the interferon and 
major histocompatibility complex (MHC) II MP, including STK11 and 
KEAP1 mutations in lung adenocarcinoma (LUAD) and CASP8 muta-
tions in HNSCC (Extended Data Fig. 4). CASP8 is involved in apoptosis, 
and its expression is induced by interferon11. Thus, inactivating CASP8 
mutations may enable cancer cells to survive in an interferon-high 
environment by inducing an interferon response program but without 
activating apoptosis.

MP clinical associations
To explore the significance of MPs, we first examined their associa-
tion with proliferation. In each tumour, we calculated the correlation 
between proliferation scores of cells (maximal expression of cell-cycle 
MPs) and expression of other MPs. The average correlations across 
tumours define the overall propensity of cells in each state to prolif-
erate (Supplementary Fig. 4). Most MPs are slightly negatively corre-
lated with proliferation, suggesting that cycling cells may repress other 
programs and divert resources to proliferation. The most significant 
negative correlation (P = 9.8 × 10−32) was found for MP19, consistent 
with its annotation as EpiSen.

Conversely, MYC targets (MP20), proteasomal degradation (MP8) 
and respiration (MP21) were positively correlated with proliferation 
(P = 1.8 × 10−23, 8.8 × 10−14 and 7.8 ×10−11, respectively). The associa-
tion of respiration with proliferation suggests that despite the ten-
dency of many cancers to rely primarily on glycolysis12, subsets of 
cells with increased respiration tend to have increased proliferation  
capacity.

Next, we examined the association of MPs with clinical features. 
Given the limited clinical annotation of scRNA-seq datasets, we again 
turned to analysis of (average) MP expression in bulk TCGA samples, 
and identified associations with overall survival, grade and stage, lymph 
node metastasis and therapy resistance (Extended Data Fig. 5a–c and 
Supplementary Table 8). Some associations are context-specific, such 
as the associations of the alveolar MP with higher overall survival and 
with decreased therapy resistance in LUAD, and the associations of 
the glutathione MP with higher overall survival and lower prolifera-
tion in KIRC (Extended Data Fig. 4k,l). Other associations are more 
consistent across cancer types, such as cell cycle, hypoxia and pro-
teasomal degradation correlating with worse outcomes (Extended  
Data Fig. 5d).

MP context specificity
We classified the frequency of each MP in each cancer type as absent, 
low, medium, high or high and significantly enriched (Fig. 3a and  
Methods). Seven MPs were found at medium or high frequency in most 
cancer types and are denoted as general (Fig. 3b). These include MPs 
of cell cycle, stress, hypoxia, interferon responses, EMT III and MYC 
targets. By contrast, 13 MPs found only in one or two cancer types were 
denoted as context-specific. The remaining MPs (21 out of 41) were 
detected in 3 to 12 cancer types and denoted as shared.

To validate MPs and their context specificity, we examined spatial 
transcriptomics (Visium) data for ovarian cancer, skin squamous cell 
carcinoma and glioblastoma13–15. We detected 28 of the 29 MPs defined 
in these cancer types by scRNA-seq, and their context specificity was 
highly consistent between Visium and scRNA-seq (Supplementary 
Fig. 5).

Several MPs had unexpected context specificity. For example, MP38 
and MP39, enriched with glutathione and metal-response genes, respec-
tively, were identified as variable only within KIRC. Expression of these 
MPs is not unique to KIRC and is even higher in other cancer types, 
but their variability is seen only in KIRC, highlighting the distinction 
between specificity of an expression program and the specificity of 
its intratumour variability (see Supplementary Fig. 6 for a systematic 
analysis).

Other MPs were identified as variable more broadly than expected. 
EpiSen was previously described in HNSCC6,7, but here we find it in 
subpopulations of cells from 131 tumours across 9 cancer types and 
validated it in 4 cancer types (Fig. 3c, Extended Data Fig. 6a and Sup-
plementary Fig. 7). As a second example, MP30 resembles signatures of 
the ‘classical’ subtype of pancreatic ductal adenocarcinoma (PDAC)16,17, 
but apart from PDAC tumours, it was identified as variable within lung, 
colorectal, liver, and head and neck cancers (Figs. 2b and 3a).
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A PDAC-classical MP linked to mucins
To understand the variability of MP30 in non-PDAC tumours, we exam-
ined the TCGA tumours with highest MP30 expression. In HNSCC, 
tumours with high MP30 expression were enriched with NSD1 muta-
tions (Fig. 3d). In LUAD, tumours with high MP30 expression had high 
expression of other PDAC-enriched genes (Fig. 3d and Supplemen-
tary Fig. 8) and an enrichment of KRAS mutations common in PDAC 

(P = 0.0032, hypergeometric test). This subset of LUADs is enriched 
(P = 9.7 × 10−10) with histological classification as invasive mucinous 
adenocarcinoma (Fig. 3d), suggesting a link between this LUAD 
histology and PDAC features18. We validated the expression of the 
PDAC-classical marker TFF1 (encoded by the top gene in MP30) in lung 
invasive mucinous tissues (Fig. 3e and Extended Data Fig. 6b). Thus, 
MP30 is common in PDAC but is also observed at a lower frequency in 
other contexts, in which it is associated with specific genetics (NSD1 
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mutations in HNSCC) and a mucinous histology (in LUAD; Extended 
Data Fig. 4g).

Two observations further support a link between MP30 and mucin 
production. First, MP30 and PDAC-classical signatures16,17 contain 
mucin genes (MUC13, MUC5AC and MUC5B) and genes associated with 
mucin production such as GCNT3 and TFF1-3. Second, the MP30 regula-
tors inferred by SCENIC (CREB3L1 and FOXA3; Extended Data Fig. 2) are 
associated with differentiation of goblet cells19,20, which are specialized 
for mucin production. Thus, MP30 might reflect the aberrant induction 
of a mucin production program that could occur in a variety of cancer 
cells but is particularly common in PDAC.

Hallmarks of transcriptional ITH
Owing to the large breadth of samples used to derive MPs, the 11 families 
of MPs may be considered as hallmarks of transcriptional ITH (Fig. 3f). 
Two abundant hallmarks (cell cycle and stress) are common in nearly 
all cancer types and together cover more than half of all programs of 
transcriptional ITH. The remaining nine hallmarks have lower frequen-
cies and unique context specificities (Fig. 3f,g). For example, interferon 
response covers 6% of all ITH programs in solid tumours, but is almost 
absent in sarcoma (1%) and particularly abundant in breast cancer (19%).

The most common hallmark after cell cycle and stress is of 
‘lineage-related’ MPs, including programs that resemble developmental 
and differentiated cell types such as skin pigmentation, alveolar cells, 
and neuronal and oligodendrocyte progenitors. These MPs are consist-
ent with the notion that ITH recapitulates developmental trajectories. 
Abundance of this hallmark varied markedly between cancer types, 
covering 36% of all ITH programs in glioma5 but not being detected 
in other cancer types such as ovarian and breast cancer (Supplemen-
tary Table 9). A more lenient method for MP detection identified few 
additional lineage-related MPs (for example, androgen receptor MP 
in some breast and prostate tumours; Supplementary Fig. 9 and Sup-
plementary Table 2). Yet, lineage-related MPs remained rare in most 
cancer types, whereas the main patterns of ITH reflect core cellular 
processes that are shared across cancer types, such as cell cycle, stress, 
anti-viral responses and respiration.

Cancer cell lines recapitulate most hallmarks, except for hypoxia 
(probably reflecting higher oxygen concentration in cell cultures), 
MYC targets (invariably high in cell lines, possibly reflecting selection 
for MYC activity during establishment of cell lines), respiration, cilia 
and secreted (Fig. 3g). Future analysis of mouse models and organoids 
may shed light on the tumour microenvironment (TME) components 
required for these ITH patterns. By contrast, the cell cycle and protein 
regulation hallmarks were particularly abundant in cell lines.

MPs of non-malignant TME cell types
The 3CA compendium contained 1,199,312 non-malignant cells from 
38 TME cell types. The 6 most common cell types (fibroblasts, mac-
rophages, T cells, B cells, epithelial cells and endothelial cells) were each 
represented by more than 50,000 cells from more than 200 tumours 
(Fig. 4a and Supplementary Table 1). We applied the analysis described 
above to define MPs in these cell types and annotate them by functional 
enrichments (Extended Data Fig. 7 and Supplementary Table 10).

Most malignant MPs resemble the non-malignant MPs of epithelial 
cells but not the MPs of other cell types (Fig. 4b,c and Extended Data 
Fig. 8), suggesting that a large fraction of the heterogeneity seen in 
malignant cells already exists in the cells of origin. For example, we 
identified an EpiSen MP in malignant and in non-malignant epithelial 
cells, both of which were validated by immunohistochemistry (IHC) 
(Extended Data Fig. 6). Analysis of pre-malignant tissues (adeno-
mas)21 suggested an intermediate stage with higher similarity in MP 
expression to malignant than to non-malignant epithelial cells (Sup-
plementary Fig. 10). Similarly, for each of the six common TME cell 

types, comparison of MPs between tumours and healthy tissues22–25 
demonstrated extensive similarities (Supplementary Fig. 11 and Sup-
plementary Table 11).

Despite the similarity of malignant MPs to non-malignant epithelial 
MPs, the remaining differences highlight cancer-specific features (Sup-
plementary Fig. 12 and Supplementary Table 12). In some cases, these 
differences reflect context-specific coupling between related pathways. 
For example, the EpiSen malignant MP harbours both epithelial differ-
entiation genes and secreted factors, whereas these are observed as 
two distinct MPs of non-malignant epithelial cells. This suggests that 
differentiation and secretion are coupled only in the malignant cells, 
possibly reflecting an aberrant senescence response.

Coupling of MHC II with interferon MPs
Context-specific coupling was especially common for MHC II genes. 
The alveolar MP of non-malignant cells includes several MHC II genes, 
consistent with the antigen presentation of normal lung AT2 cells26. Yet, 
the highly similar malignant alveolar MP lacks MHC II genes, suggesting 
that specifically in malignant cells, alveolar differentiation is decou-
pled from antigen presentation (Fig. 4d and Supplementary Fig. 12a).

Conversely, MPs of interferon response tend to be coupled to 
MHC II expression in malignant, but not in non-malignant, cells. In 
non-malignant immune and stromal cells, we identified separate 
MPs for interferon response genes and for MHC II genes, whereas the 
two sets of genes were highly correlated and part of the same MPs in 
malignant cells (Fig. 4c,d and Extended Data Fig. 9e–g). This coupling 
between interferon response and MHC II genes was also observed in 
non-malignant epithelial cells (unlike other non-malignant cells), 
albeit more weakly. We validated by IHC the coupling in malignant 
cells, which was typically seen in proximity to T cells, and the decou-
pling in non-malignant (for example, endothelial) cells (Fig. 4e and 
Extended Data Fig. 10). These results suggest that interferon-γ signal-
ling from T cells efficiently activates the expression of MHC II genes 
in epithelial cells (malignant and non-malignant), whereas additional 
mechanisms induce MHC II in other cell types, thereby decoupling it 
from interferon responses.

Among malignant cells, interferon and MHC II are coupled in most 
tumours (75%) but not in others (Fig. 4d and Extended Data Fig. 9e–g). 
IHC demonstrated a gradient from coupled to decoupled malignant 
cells, highlighting the coexistence of these states in the same tumour 
(Fig. 4e, right panels, and Extended Data Fig. 10). Taken together, our 
findings show that MHC II, interferon response and alveolar differen-
tiation reflect coherent expression programs that are observed across 
several cell types and cancer types; yet, the coupling among those 
programs varies among cell types, among tumours and even spatially 
within the same tumour, indicating its complex regulation. Expression 
of MHC II and interferon responses have important effects on T cell 
functions, raising the possibility that coupling (or decoupling) may 
be under selection in tumours.

Inferring cell-type associations
TME cell types influence one another through secreted factors, physical 
interactions or competition over nutrients and oxygen. To uncover such 
effects, we examined the co-occurrence between MPs of different cell 
types. The fractions of cells scoring highly for each MP were defined in 
each tumour, and then centred within each study and combined to an 
integrated dataset that was used to define MP correlations (Methods). 
We constructed a graph from the positive correlations (Fig. 5a), as 
well as from the negative correlations, which were fewer and weaker 
(Supplementary Fig. 13).

The graph of positive correlations highlighted five clusters (shaded 
areas in Fig. 5a). One cluster consists of five MPs enriched in LUAD and 
linked to angiogenesis (grey shaded area in Fig. 5a): two endothelial 
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MPs with genes encoding angiogenesis factors27 (for example, EGFL7, 
PLVAP and EPAS1), and three non-endothelial MPs with genes encod-
ing secreted pro-angiogenic factors: VEGF-A, GAS6, CLIC3 and ANXA3 (in 
Epi1 MP); VEGF-D and SLIT2 (in CAF3 MP); and CCL18, FABP4 and IGFBP2 
(in MAC2 MP). These MPs also included genes encoding anti-angiogenic 
factors (NOTCH4, TIMP3 and IGFBP7), potentially reflecting a negative 
feedback loop during angiogenesis. These correlated MPs suggest a 
multicellular TME network linked to angiogenesis in LUAD.

The other four MP clusters were each made up of MPs that reflect the 
same process in distinct cell types (blue shade in Fig. 5a). These include a 
cluster of interferon responses (in seven cell types), stress responses (in 
five cell types), heat-shock responses (in four cell types) and cell cycle 
(in six cell types). The correlations within these MP clusters remained 
significant when we excluded shared genes between the cell types, indi-
cating that they cannot be explained by ambient RNA (Supplementary 
Fig. 13). These clusters may reflect a concomitant response of several 
adjacent cell types to the same TME features (for example, interferon 

and other molecules). The cell-cycle cluster seemed unexpected given 
that proliferation of malignant cells is typically thought to be intrinsi-
cally driven by oncogenic mutations. Using spatial proteomics data-
sets28–30, we validated the prediction that cycling cells of several cell 
types are co-localized in ‘high-proliferation’ niches (Fig. 5b, Supple-
mentary Fig. 5 and Supplementary Fig. 14). Correlated proliferation of 
diverse cell types may be driven by TME mitogens or by interactions 
between cell types, such as transfer of proteins through exosomes or 
other mechanisms. Such transfer could potentially contribute also to 
the other MP clusters described above, as well as to the correlation 
that we observe between the MYC-related MPs of malignant cells and 
B cells31 (Fig. 5a).

Immune-related TME associations
Next, we shifted our attention from MP clusters to pairwise correla-
tions among MPs. Such correlations could reflect ligand–receptor 
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pairs expressed by the respective cell types (Supplementary Table 13). 
Owing to the large number of potential interactions, we focus here on 
those that involve the cytotoxicity or recruitment of T cells and hence 
might influence the response to immunotherapies.

CD8+ T cell cytotoxicity was most strongly correlated with the mac-
rophage interferon response (Supplementary Fig. 15), probably reflect-
ing the secretion of interferon-γ by cytotoxic T cells that then induces an 
interferon response of macrophages. The second strongest correlation 
of CD8+ T cell cytotoxicity was with the proteasomal degradation MP 
of malignant cells. This may reflect the role of proteasomal degrada-
tion in antigen presentation through MHC I, which could facilitate the 
recognition of malignant cells by T cells and their subsequent activa-
tion. This association was observed in the combined dataset as well 
as in datasets of several specific studies (Supplementary Fig. 15 and 
Supplementary Table 14). Thus, upregulation of the proteasomal MP 
might be beneficial in the context of immunotherapies.

Although negative associations were weaker, we noticed that the 
alveolar MP of malignant cells is significantly (P < 0.05) negatively cor-
related both with the cell cycle and with the cytotoxicity MPs of CD8+ 
T cells (Supplementary Fig. 15 and Supplementary Table 14). This may 
suggest a negative effect of malignant cell alveolar differentiation on 
immune activation, possibly linked to the decoupling of this program 
from antigen presentation, as noted above.

Recruitment of T cells to tumours depends on their migration 
through specialized vessels, such as high endothelial venules (HEVs)32. 
The frequently observed endothelial MP2 included HEV markers (for 
example, ACKR1 as the number 1 gene), MHC II genes and many other 
immune-related genes such as those encoding chemokines (CCL2, 

CCL14 and CXCL14) and selectins (SELP and SELE) that mediate leukocyte 
recruitment and interactions, respectively (Supplementary Table 10). 
This HEV-like MP is positively correlated with the complement MP of 
fibroblasts (Fig. 5a). We further validated by IHC the co-localization 
of HEVs with complement-expressing fibroblasts in HNSCC (Fig. 5c 
and Supplementary Fig. 16). These results provide evidence of a mul-
ticellular stromal organization that may facilitate leukocyte migra-
tion, consistent with the previously described correlation between 
fibroblast-derived complement and T-cell infiltration3.

Discussion
The transcriptome of a cancer cell may be considered as a proxy to its 
‘global’ state. Comparison of global cell states across tumours under-
scores a high degree of cellular heterogeneity that remains difficult to 
interpret. We argue that dividing the differences in global cell states 
into intertumour and intratumour heterogeneity helps to make sense 
of such high heterogeneity. Intertumour differences reflect the cumu-
lative effects of genetic and epigenetic aberrations that have been 
acquired during the lengthy oncogenic process of each tumour, creat-
ing distinctive tumour-specific profiles, whereas intratumour differ-
ences primarily reflect recent events that have shaped the state of cells, 
including their phase along the cell cycle, their short-term responses 
to surrounding cells, cytokines and nutrients (or lack thereof), and 
their stochastic fluctuations. Whereas intertumour differences have 
been widely studied during the past two decades through bulk RNA-seq 
profiles, the ability to analyse intratumour differences emerged only 
recently and has been carried out at a limited scale. Here we carry out 
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a systematic analysis of intratumour differences through curation of 
a large number of scRNA-seq datasets.

We find that relative cell states tend to be shared across tumours. 
Thus, certain aspects of ITH are predictable, such as subpopulations of 
EMT-like or senescent cells in HNSCC. Predictable subpopulations may 
warrant new therapeutic strategies. For example, combination thera-
pies may target coexisting cellular states, and differentiation therapies 
may shift cells from an aggressive state (for example, EMT-like) to a 
more benign or responsive state (for example, senescent cells).

Some patterns of ITH may have been overlooked in our analysis. First, 
rare patterns may not be sampled sufficiently in this cohort. Second, our 
approach efficiently detects large-scale expression programs but could 
miss programs of only a handful of genes or those primarily reflecting 
proteins or metabolites rather than mRNAs. Third, our approach for 
inferring TME interactions, by MP co-occurrence across the entire 
compendium, highlights generic interactions over context-specific 
ones. For example, potential interactions of CD4+ T cells in pancreatic 
cancer seem to be absent in other cancers (Supplementary Fig. 15). At 
present, we are underpowered to evaluate each interaction in each can-
cer context and will revisit these analyses as 3CA is further expanded.

In summary, we curated a large pan-cancer atlas that enabled us 
to define a comprehensive map of transcriptional ITH. To support 
the use of this framework by future studies, we provide software to 
quantify and visualize the MPs reported here in any new scRNA-seq 
dataset (Extended Data Fig. 11). This framework may be refined by 
future studies and will guide our understanding of ITH towards new 
therapeutic strategies.
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Methods

Data curation
A total of 77 single-cell RNA-seq (scRNA-seq) datasets, which include 
1,456 samples (that is, tumours), were curated. Most of these data-
sets are available at https://www.weizmann.ac.il/sites/3CA aside from 
unpublished datasets and datasets for which we did not obtain shar-
ing permission from the authors of the original studies. For dataset 
selection, we first constructed a list of potentially relevant studies 
through PubMed search, and continuously updated it through litera-
ture review. Each study was then examined for the type and amount 
of scRNA-seq data generated in it, prioritizing studies with data for 
several patient tumours and including a reasonable fraction of malig-
nant cells. When seeking to add each new dataset to our cohort, we 
initially checked whether the data are publicly available for download-
ing (for example, through the Gene Expression Omnibus database 
repository). Most publications freely provided the data in the form of 
an expression matrix, together with a list of associated genes and cells 
(barcodes). Several datasets were only available on author consent, in 
which case we contacted the authors for permission. The cohort also 
includes unpublished and published datasets that were previously 
analysed in our laboratory, and that were already sequenced, aligned 
and processed. Most of the external datasets we downloaded, even 
when freely available, did not include the cell annotations presented 
in the published manuscript. In these cases, we contacted the leading 
authors and requested that they provide us with the annotations they 
used. In some cases, annotations of the original study were either not 
provided by the authors or were limited (for example, not distinguish-
ing between malignant and non-malignant epithelial cells), in which 
case we inferred the annotations ourselves.

Verification of cell annotation
For each dataset—both for author-based annotations and for the anno-
tations that we defined—we carried out the following analyses to ensure 
the validity of the annotations. First, we carried out dimensionality 
reduction using UMAP and examined whether the cells annotated 
as different cell types clustered separately. Second, we validated the 
annotations by verifying that the top differentially expressed genes of 
each cell type match known marker genes. Finally, we inferred CNAs 
(using the package available at https://github.com/jlaffy/infercna), 
to verify the annotation of cells as malignant. Some samples in which 
we could not resolve the annotations, possibly owing to low data qual-
ity, were excluded during this process and were not used for further  
analysis.

Data preprocessing
The following preprocessing steps were carried out before conducting 
downstream analysis.

Cell filtering. We excluded cells with a low number of detected 
genes (ngenes). For 10x data, our cutoff was typically ngenes > 1,000. For 
smart-seq2 data, we typically used a higher cutoff of ngenes > 2,000 
genes. For other single-cell platforms, we adapted the cutoff and in 
some cases used a threshold lower than 1,000 genes, but never lower 
than the cutoff used by the original study.

Sample filtering. After cell filtering, we excluded samples having fewer 
than 10 malignant cells. When appropriate, we also excluded samples 
with unresolved CNA patterns. In total, 1,163 samples were retained 
for downstream analysis.

Gene filtering. Given an expression matrix A with n genes (rows) and 
m cells (columns), the mean expression of gene i across cells is given 

by E = ∑i n j
m A

m{1.. } =1
ij . For most analyses, we kept the 7,000 genes with the 

highest Ei value in each sample.

Normalization. UMI counts were converted to counts per million 
(CPM). For most analyses, each entry in the matrix was then normalized 
according to ( )E = log + 12

CPM
10

. The same normalization was used for 
transcripts per million (TPM) values. The values were divided by 10 as 
the actual complexity is assumed to be in the realm of about 100,000 
and not 1 million as implied by the CPM and TPM measures.

Centring. For most analyses, the data were centred (each gene was cen-
tred across all cells). Centring was carried out separately for each study.

Defining a non-redundant set of robust NMF programs
We carried out NMF for each sample separately, to generate programs 
that capture the heterogeneity within each sample. Negative values 
in each centred expression matrix were set to zero. As application of 
NMF requires a ‘K’ parameter that influences the results, we ran NMF 
using different values (K = 4, 5, 6, 7, 8 and 9), thereby generating 39 
programs for each tumour. Each NMF program was summarized by the 
top 50 genes based on NMF coefficients. We reasoned that the most 
meaningful NMF programs are those that would recur across different 
values of K as well as across tumours; such programs (denoted here as 
robust NMF programs) were defined by the following three criteria: 
robust within the tumour (a program that is represented by several 
similar NMF programs, as defined for the same tumour when analysed 
by multiple K values; two NMF programs were considered as similar if 
they had at least 70% gene overlap (35 out of 50 genes)); robust across 
tumours (NMF programs that had at least 20% similarity (by top 50 
genes) with any NMF program in any of the other tumours analysed); 
non-redundant within the tumour (within each tumour, NMF programs 
were ranked by their similarity (gene overlap) with NMFs from other 
tumours and selected in decreasing order; once an NMF was selected, 
any other NMF within the tumour that had 20% overlap (or more) with 
the selected NMF was removed, to avoid redundancy). This approach 
yielded a total of 5,547 robust NMF programs

Defining MPs
We next clustered the robust NMF programs according to Jaccard 
similarity. The clustering was carried out using a custom approach 
(Supplementary Fig. 1) that defined clusters of NMF programs and 
a list of 50 genes that constitute the MP. In brief, each robust NMF 
program was compared to all other robust NMF programs to assess 
the degree of gene overlap between programs. Considering overlap 
instances of at least 10 genes, the programs with the maximal num-
ber of considerable overlaps was selected as a potential founder of a 
new cluster. If the number of overlapping NMF programs (>10 genes) 
exceeded 5 cases, the NMF program with the highest gene overlap to 
the founder NMF program was added, and thus a cluster was formed. 
The MP for the cluster was initially defined by the genes that appeared 
in both programs. To complete the list to 50 genes, the genes with the 
top NMF scores (in either program) were selected. The process was 
then repeated by searching for the program with maximal overlap 
with the MP, adding it to the cluster as long as the overlap was at least 
10 genes, and updating the MP (selecting genes that appeared in the 
highest number of programs, and completing the MP list to 50 genes 
according to NMF scores in the set of programs). In this way, the MP 
was updated after addition of each NMF, reflecting the genes common 
to the programs constituting the cluster. The cluster was completed 
when no NMF could be added, and an attempt to form a new cluster 
was made as described above.

This approach yielded 67 initial MPs. We further removed MPs that: 
were suspected to reflect low-quality data or other technical confound-
ers, with a strong enrichment of either ribosomal protein genes or 
mitochondrial-encoded genes; included NMF programs from only 
a single study, even though that study reflected a cancer type that 
is also examined by additional studies; or were suspected to reflect 
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doublet cells on the basis of high similarity to the expression profile 
of a non-malignant cell type (for example, T cells or macrophages). 
We retained 41 MPs, and assessed their enrichment in functionally 
annotated gene sets.

Gene sets for functional enrichment analyses
We primarily used signatures from MsigDB, including the following 
collections of gene sets: Gene Ontology (C5.GOBP, C5.GOCC and 
C5.GOMF), Hallmark (H) and Cell Types (C8). We also added selected 
additional signatures (not taken from MsigDB) related to brain or gli-
oma, alveolar and PDAC signatures. Signatures with a false discovery 
rate (FDR)-adjusted P < 0.05 (hypergeometric test) were considered 
significantly enriched (Supplementary Table 3). The 41 MPs were 
further grouped by functional similarities into 11 hallmarks (Fig. 2). 
Metabolism-related signatures were defined as all gene lists that con-
tained in their title the word ‘metabolism’, or words associated with 
metabolism, that were derived from MSigDB (including Gene Ontology,  
Hallmark, Cell Types and curated sets; Supplementary Table 5).

Inferring MP regulators
We applied the SCENIC method10 to malignant cells in each of the sam-
ples in which we identified cancer MPs. The SCENIC workflow includes: 
identifying gene sets that are co-expressed with transcription factors; 
retaining modules with significant cis-regulatory motif enrichment 
of the correct upstream regulator (termed regulons); and deriving 
regulon expression scores in each cell (using the AUCell algorithm).

In each sample that participated in a malignant MP, we calculated the 
correlation between the cells’ malignant MP scores and their regulon 
scores. We then selected the regulons with a statistically significant 
correlation (P < 0.05 after FDR correction) that is above 0.5 or below 
−0.5. We retained the top three positively or negatively correlated regu-
lons as potential MP regulators. We also retained regulons that were 
consistently selected in many samples (at least 10 different samples or 
at least 30% of all samples with the MP), whereas those selected only in 
one or very few samples were excluded. Correlation values of selected 
regulons were averaged across samples in each MP and then clustered 
(Extended Data Fig. 2). We also searched for regulons that had signifi-
cantly higher or lower correlations in samples of one or more cancer 
types compared to the rest based on P < 0.05 by a hypergeometric test 
with FDR correction (Extended Data Fig. 2 and Supplementary Table 6). 
Notably, some of the regulons that came up according to SCENIC are 
not known transcription factors according to our knowledge or the 
literature. We removed the questionable regulons from Extended Data 
Fig. 2b, but retained all SCENIC output in Extended Data Fig. 2a and 
in the full regulon list in Supplementary Table 6. The top correlated 
transcription factors in Supplementary Table 6 were defined as regu-
lons with a mean correlation of above 0.5 (positive regulons) or below 
−0.5 (negative regulons). For MPs with fewer than three such positive 
regulons, we added the subsequent top positive ones so that the list 
was made up of at least three positive regulons when possible.

Subclone analysis
We systematically inferred CNA patterns throughout the scRNA-seq 
compendium to identify the malignant cells, as described above. Each 
CNA matrix was then first filtered, retaining the top 67% genes with high-
est CNA absolute signal. We next derived several clusters using Louvain 
clustering with k = 15. A chromosomal arm was considered to be deleted 
or amplified in a cluster when the cluster cells’ average CNA values 
across genes in a chromosome were smaller than −0.15 or larger than 
0.15. To ensure that clusters correspond to distinct genetic subclones, 
we then iteratively merged all pairs of clusters for which we could not 
find any chromosome arm with evidence for a distinct copy number 
according to the following criteria: clusters had the same assignment 
as deleted, amplified or neither across all chromosomes; clusters had 
a maximal difference across all chromosomes that was less than 0.15.

After the merging process was completed, the remaining clusters 
were considered as distinct subclones and were examined for differ-
ences in MP expression. Finally, in each subclone we calculated: the 
CNA signal, defined as the mean of the absolute CNA values across 
the genes with the top 67% values; the CNA correlation, defined as 
correlation between CNA values (per cell) and the mean CNA values 
of the top 25% cells as defined by CNA signal.

We determined the thresholds for CNA signal and correlation as 
the values observed in the lower percentile (1%) of cells by each meas-
ure. Cells passing both thresholds were considered to be malignant 
cells, cells that passed only one of the thresholds were unresolved, and 
cells that passed neither threshold were considered non-malignant 
(Extended Data Fig. 3).

Bulk RNA-seq gene set scores
Bulk tumour RNA-seq profiles were downloaded from TCGA via the 
Broad GDAC Firehose (https://gdac.broadinstitute.org). Malignant- 
cell-specific profiles, obtained through the deconvolution algorithm 
CIBERSORTx, were provided by the authors of Luca et al. (ref. 35) Expres-
sion levels per tumour were defined as log2[TPM]. For a given gene set 
(for example, an MP), a score was defined for each tumour through a 
method described previously (ref. 36). In brief, for each gene in the 
given gene set, the expression levels of this gene were centred rela-
tive to the average across a set of control genes, which are chosen to  
have similar average expression levels (across all tumours) to the given 
gene. The tumour score for this gene set is then defined as the average 
of these centred expression levels across all genes in the set. Scores for 
a given MP were computed only for those cancer types in which this 
MP was detected through scRNA-seq.

Association of bulk RNA-seq MP scores with genomic alterations
Mutation annotations and discretized CNA values for TCGA samples 
were obtained from the Broad GDAC Firehose. To limit our analysis to 
the most relevant events, we considered only functional mutations, 
focal CNAs and whole-arm CNAs. Mutations were considered only for 
genes in the Cancer5000-S set from Lawrence et al.37, and were consid-
ered functional if they were nonsense, non-stop, frameshift indels or 
occurring at a splice site or translation start site, or missense or in-frame 
indels occurring in at least two patients. Focal CNAs were defined as 
genes having discretized values of ±2, whereas whole-arm CNAs were 
defined for chromosome arms that had at least 100 genes and which 
had an average discretized value greater than 0.9 or less than −0.9. 
Of all these genomic alterations, in each cancer type we considered 
only those that were detected in at least 10 samples and in at least 10% 
of samples, and which were not detected in at least 10 samples. For 
cancer types having highly distinct subtypes that might confound 
observed associations (for example, genetic or expression subtypes), 
we considered these subtypes separately. For a given genomic altera-
tion in a given cancer type or subtype, effect sizes were defined as the 
difference in average MP scores between samples with and without this 
alteration, and P values were computed by t-test. Only associations with 
effect size greater than 0.4 were retained for further analysis. Among 
these, P values were adjusted by Benjamini–Hochberg correction, 
and cases were deemed significant if their adjusted P values were less 
than 0.05. As there were many more significant whole-arm CNAs than 
mutations or focal CNAs, a stricter effect-size threshold of 0.6 was used 
for Extended Data Fig. 4c,d.

Association of bulk RNA-seq MP scores with clinical features
Clinical annotations for TCGA samples were obtained from the Broad 
GDAC Firehose and from Liu et al.38, and data from these two sources 
were amalgamated to achieve the highest possible number of annotated 
samples. For overall survival and progression-free interval, effect size 
was defined as the hazard ratio, computed through Cox regression, 
with P value obtained by overall likelihood test. For all other clinical 
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variables, the samples were divided into two groups and effect size 
was defined as the difference in average MP scores between these two 
groups, and P values were obtained by t-test. The criteria for dividing 
samples into groups varied between clinical features and cancer types, 
depending on the data available and the distribution of values across 
samples (see source code in https://github.com/tiroshlab/3ca/tree/
main/ITH_hallmarks). For cancer types having highly distinct subtypes 
that might confound observed associations (for example, genetic or 
expression subtypes), we considered these subtypes separately. After 
carrying out these computations using both non-deconvolved and 
deconvolved profiles, P values were adjusted across all of these compu-
tations using the Benjamini–Hochberg method (Extended Data Fig. 5).

MP abundance assessment
We first calculated, for each MP, the observed number of MP-related 
NMF programs in each cancer type. The expected abundance was then 
defined by multiplying the number of MP-related NMF programs  
(that is, the MP size) by the total number of NMF programs identified 
in the cancer type, across all MPs, and dividing that by the total number 
of robust NMF programs. Finally, for each combination of cancer type 
and MP, we calculated 



A = log2

observed + 1
expected + 1

 and the Bonferroni- 
adjusted P value using a hypergeometric test. The abundance classifi-
cation in Fig. 3a was defined as follows—absent: 0 MP-related NMF 
programs in that cancer type; low: 1 MP-related NMF program in that 
cancer type and −1.5 < A ≤ 0; medium: between 2 to 10 MP-related NMF 
programs in that cancer type or 0  < A ≤ 1; high: >10 MP-related NMF 
programs in that cancer type or A > 1; high (significant): same as high 
and adjusted P value <  0.05.

IHC staining protocol
Following deparaffinization and rehydration, antigen retrieval of FFPE 
sections was carried out using citrate buffer (pH 6; Sigma catalogue 
number C9999) in a pressure cooker. Sections were blocked in CAS 
block (Thermo Fisher catalogue number 8120) and incubated with 
primary antibody diluted in CAS block overnight at 4 °C. Primary anti-
bodies included: mouse MHC class II (1:100, ab55152; Abcam), rabbit  
ISG20 (1:100, ab154393; Abcam), goat SMA (1:200, LS-b3933-50; 
LifeSpan Biosciences), goat p63 (1:200, AF1916; R&D Systems), rat 
CD3 (1:100, LS-B8765-50; LifeSpan Biosciences), goat EPCAM (1:100, 
AF960; Millipore), rabbit TFF1 (1:100, ab92377; Abcam), mouse pan- 
cytokeratin (1:100, ab86743; Abcam), rat MECA79 (1:100, NB100-
77673; Novus Biologicals), rabbit C3 (1:100, ab7462; Abcam), rabbit 
SLPI (1:100, PA582990; Invitrogen), rabbit SPRR1B (1:100, LS-C161464-
400; LifeSpan Biosciences) and mouse LAMC2 (1:100, NBP2-42388; 
Novus Biologicals). Primary antibodies were initially validated with 
positive controls using HNSCC (SPRR1B, SLPI, EPCAM, panCK, p63 and 
LAMC2), PDAC (TFF1 and EPCAM) and a tissue microarray containing 
tonsil, lymph node spleen, placenta and Hodgkin’s lymphoma (CD3, 
C3, SMA, MECA79, ISG20 and MHC class II). Sections were stained with 
fluorescent secondary antibodies (all used at 1:200) for 2 h at room tem-
perature and included: donkey anti-rabbit Cy3 (711-165-152, Jackson),  
donkey anti-goat AlexaFlour 647 (705-605-003, Jackson), donkey 
anti-rat AlexaFluor 647 (712-605-150, Jackson), donkey anti-goat Cy3 
(705-165-003, Jackson), donkey anti-rabbit FITC (711-095-152, Jackson) 
and donkey anti-mouse FITC (711-095-152, Jackson). Sections were 
mounted with Fluoroshield mounting medium containing DAPI (Sigma, 
catalogue number F6057). Whole-slide image scanning was carried 
out using a PhenoImager Fusion (Akoya Biosciences) and images were 
analysed with QuPath39 version 0.3.2. The antibodies and samples that 
were used for staining are listed in Supplementary Table 15.

Analysis of MP30 (PDAC-classical) in LUAD
Expression data for LUAD and PDAC tumours were obtained from 
TCGA and normalized as described above, and patient samples were 
removed if they had no accompanying mutations data or if several 

tumour samples existed for the same patient. LUAD tumours were 
scored for the 50-gene PDAC-classical signature using the method 
described above. By manual inspection of the distribution of these 
scores, a long tail was observed above 1.5; hence, this threshold was 
chosen to distinguish PDAC-classical-high LUAD tumours. Hyper-
geometric tests were used to quantify the enrichment of mucinous 
samples, and likewise the enrichment of KRAS mutations, among the 
PDAC-classical-high tumours. The mean correlation of each LUAD sam-
ple with PDAC samples was calculated as follows. First, for each of LUAD 
and PDAC, we computed the variability of all genes by median absolute 
deviation from the median and selected the 2,500 genes with the high-
est such variability. Restricting to the intersection of these two gene sets 
(about 1,500 genes), we computed the pairwise correlations between 
LUAD and PDAC expression profiles. For each LUAD sample, we then 
computed the mean such correlation across PDAC samples (Fig. 3d). 
We also showed that LUAD samples that contributed an NMF program 
to the PDAC-classical MP had higher resemblance to PDAC samples by 
averaging the top 100 differentially expressed PDAC genes (obtained 
by comparing all PDAC samples to all LUAD samples) in LUAD samples 
(Supplementary Fig. 8, P < 0.05 by two-sample t-test).

Spatial transcriptomics Visium data analysis
We used published Visium datasets, spatially profiling tumour samples 
from the ovary (8 samples), skin (4 samples) and GBM (9 samples)13–15. 
The Visium platform averages the transcriptional profile of cells in each 
spatial spot, resulting in a higher depth per spot but lower sensitivity 
per transcript. This effect, along with other technical factors such as tis-
sue dissociation and lateral diffusion between spots, results in platform 
batch effects that can distort the results scoring spots to programs. To 
this end, we first tested whether the MP genes are truly captured as part 
of the program in the spatial data, by correlating the gene expression 
levels to the MP score per spot. Genes showing a Pearson correlation 
coefficient equal to or greater than 0.2 were selected, and only MPs 
with at least 10 genes were kept for further scoring. We developed a 
semi-automated approach that enabled us to iterate through each 
sample and assign a per-spot malignant score (using CNA inference), 
and cell-type annotation (by scoring for canonical cell-type marker 
genes). To assign cellular states, spots that were confidently assigned 
as malignant (>95 percentile for both CNA score and CNA correlation) 
were then scored to the scRNA-seq-derived cancer MPs (Supplementary 
Table 2). Non-malignant cell types were each scored to their corre-
sponding specific cell-type MPs (Supplementary Table 10). The propor-
tion of MP abundance per cancer type in the spatial data (that is, the 
proportion of spots assigned to an MP per sample) was compared to 
the observed NMF abundance in the scRNA-seq (computed for Fig. 3a) 
after centring the values across cancer types and using Pearson cor-
relation (Supplementary Fig. 5).

Global expression versus variability
To calculate the mean (global) expression of an MP and its variability 
within individual samples (Supplementary Fig. 6), we first averaged the 
(non-centred) expression of MP genes in each cell and log2-normalized 
each value. To compare the global MP expression and variability within 
each cancer type, the global MP expression was averaged across sam-
ples from the same caner type. The variability of the MP expression in 
a given cancer type was determined as the fraction of tumours (out of 
the total number of tumours in that cancer type) that contributed at 
least one NMF program to the MP. For each MP, we then calculated the 
Pearson correlation between global expression and variability across 
all cancer types.

Estimating the fraction of NMF programs and Louvain clusters 
accounted for by MPs
Each individual cell was considered to score positively to an MP on the 
basis of a one-sample t-test across the 50 genes of the MP, with null = 0 

https://github.com/tiroshlab/3ca/tree/main/ITH_hallmarks
https://github.com/tiroshlab/3ca/tree/main/ITH_hallmarks


(because the input expression data have been centred per gene). We 
used a threshold of P < 0.05 after adjusting for multiple comparisons. 
To determine whether an NMF scored significantly to an MP, we first 
centred all of the NMF programs in each sample (centring each rank 
separately), and then scored against MPs as we did with cells. We then 
carried out Louvain clustering for each sample using k = 10, which 
resulted in an average of about 4 ± 1.8 clusters per tumour (33 tumours 
that had only 1 cluster were removed from this analysis). Clusters with 
more than 50% cells that scored positive to an MP were considered as 
being accounted for by an MP and their frequency in each sample was 
compared to the frequency of robust NMF programs in the sample that 
scored significantly positive to an MP (Supplementary Fig. 2).

MP association with proliferation
In each sample, we scored every cell to the 41 MPs and calculated the cor-
relations between the scores (across cells) of the four cell-cycle-related 
MPs and the rest of the MPs that were identified as variable within that 
sample. We kept the maximal correlation out of these four, to represent 
correlation of an MP with cell cycle. We averaged the correlations of 
each MP across samples, retaining only the 29 MPs that were repre-
sented in at least 7 samples, and using one-sample t-test (with null = 0) 
to define its significance (Supplementary Fig. 4).

Defining TME MPs
We adopted an identical approach to that described above for 
the cancer cells to define MPs for the six main TME components: 
macrophages, fibroblasts, endothelial cells, B cells, T cells and 
non-malignant epithelial cells. The T cells were split into CD4 or CD8 
cells as follows: if {CD4,CD8A,CD8B} > 0, a cell was assigned as CD4+ 
when CD4 > mean{CD8A,CD8B} and as CD8+ otherwise; if CD8A = 0, 
a cell was assigned as CD4+ when CD4 > CD8B and as CD8+ otherwise 
(similarly, if CD8B = 0, a cell was assigned as CD4+ when CD4 > CD8A 
and as CD8+ otherwise); when a cell had values of 0 for CD4, CD8A and 
CD8B it was unassigned.

After removing programs that we suspected represented low-quality 
cells or mis-annotations, we were able to define 13 macrophage MPs, 22 
fibroblast MPs, 15 endothelial MPs, 12 B cell MPs, 10 CD4 MPs, 12 CD8 
MPs and 24 epithelial MPs (Supplementary Table 10).

Defining MPs in non-malignant tissue
We curated published normal scRNA-seq data from 4 large studies that 
included 184 samples and 741,309 cells22–25. We then followed a similar 
approach to how we defined MPs in malignant tissues, in which we veri-
fied the published cell annotations, derived robust NMF programs and 
finally generated MPs for epithelial cells, T cells, B cells, macrophages, 
fibroblasts and endothelial cells (see sections above). In the last step 
of generating MPs, we integrated the robust malignant NMFs with 
the robust normal NMFs of each cell type before the clustering was 
carried out to test which clusters were homogeneously mixed (that 
is, not enriched with malignant or non-malignant NMFs), and which 
clusters were enriched or depleted of a given NMF type (Supplemen-
tary Fig. 11). In each MP, we calculated the relative enrichment score, 
which is the log ratio between the observed and expected number 
of non-malignant NMF programs per cluster (see the above section 
entitled MP abundance assessment for details of how the observed 
and expected values were defined). MP annotations were obtained on 
the basis of functional enrichment as defined in earlier sections. We 
also derived MPs from normal NMFs without prior integration with 
malignant NMFs (Supplementary Table 11).

Cancer-type- and cell-type-specific associations within MPs
To search for differentiating features between different cancer types 
within the same MP, we focused on cancer types that contributed at least 
ten samples to an MP, given that there were at least ten remaining other 
samples in the MP. To this end, we applied two approaches—correlation  

based: we calculated the correlation of each gene with the scores of 
the MP within each sample, then averaged the correlations per can-
cer type and compared these average correlations, retaining genes 
with an absolute difference of 0.2 or above between samples of a 
given cancer type and the other samples; differential expression 
(DE)-based: we calculated the DE between cells with MP scores above 1  
and cells with MP scores below 0 within each sample, then averaged 
the differential expression per cancer type and compared the average 
DE values, retaining genes with an absolute difference of 1 or above 
between samples of a given cancer type and the other samples.

The two methods had high overall agreement and in subsequent 
analysis, we included only genes that were upregulated or downregu-
lated according to both approaches (Extended Data Fig. 9a–d and  
Supplementary Table 12).

To compare the gene expression patterns between cancer and epi-
thelial MPs of a similar function we grouped the cancer and epithelial 
NMF programs that constituted the respective MPs, and calculated the 
fraction of NMFs in each group with an NMF score that is larger than the 
median of the top 5 percentile of all cancer and epithelial NMF scores. 
After normalizing the fraction of each gene by its maximal value, we 
assigned each gene according to Euclidian proximity to one of the 
following vectors: {[0.5,0.5];[0.5,1];[1,0.5];[1,1]}. Genes belonging to 
[1,0.5] were considered as differentially expressed in the cancer cells, 
whereas genes belonging to [0.5,1] were considered as differentially 
expressed in the epithelial cells. Genes belonging to [1,1] were high in 
both groups, whereas genes belonging to [0.5,0.5] were low in both 
groups. Supplementary Fig. 12 shows the non-normalized fractions 
for three MPs (alveolar, EMT and EpiSen) after dividing the genes into 
groups by the approach described above.

To test the degree of MHC II and interferon coupling in malignant 
and TME cells, we curated lists of genes that represented MHC I, MHC II 
and interferon signalling, along with several other gene groups listed 
in Supplementary Table 12. We compared their individual expres-
sion levels, NMF scores and Jaccard similarity to the MPs that were 
annotated as related to MHC or interferon signalling (Fig. 4d and 
Extended Data Fig. 9e,f). To test the degree of MHC II and interferon 
coupling per cancer type within MPs, we focused on cancer types that 
contributed at least six samples to the corresponding MP, and aver-
aged the NMF scores in cells with a score > 1 (Extended Data Fig. 9f). 
A similar approach was used for comparing average gene expression 
values within samples that contributed to the cancer interferon and 
MHC II (I) MP—after centring across genes in each sample, we aver-
aged the expression values in cells with a score > 1 to the MP (Fig. 4d 
and Extended Data Fig. 9g).

Correlations between MPs of different cell types
To test the significance of the co-occurrence of cancer and TME MPs 
across tumours, we selected studies that contained at least ten samples 
with both cancer cells and TME cells (of at least one type). We next 
scored cancer cells for all cancer MPs, and similarly scored TME cells 
for their respective MPs (using the sigScores function from https://
github.com/jlaffy/scalop) and calculated the adjusted score of each 
MP—defined as the percentage of cells of a given type in each sam-
ple with a score > 1 for their respective MPs. Next we calculated the 
Pearson and Spearman correlations across all tumours between all 
possible adjusted scores, and their significance (−log10[P value]). We 
removed cases for which the Spearman correlation was not significant 
(P value ≥ 0.05), and also ignored interactions between pairs of TME 
fractions that we reasoned might be technical. Using Cytoscape soft-
ware (version 3.9.1), we generated graphs depicting the positive and 
negative Pearson correlations and their significance. For the positive 
correlations, we considered interactions with a minimal significance 
of 4 (Fig. 5a) whereas for the negative correlations in which the sig-
nificance values tended to be lower all interactions with a significant 
P value (Pvalue < 0.05) were shown (Supplementary Fig. 13).

https://github.com/jlaffy/scalop
https://github.com/jlaffy/scalop
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Validating MP associations with CODEX data
We downloaded annotated CODEX datasets from three independent 
recent studies of HNSCC and CRC tumours28–30, resulting in a total of 
243 annotated regions of interest coming from 59 tumours and 50 
patients. We assessed Ki67 indices reflecting the proportion of cycling 
cells for every annotated cell type and carried out correlation analysis 
within all regions of interest (n = 243, area = 2,300–25,002 µm2). For 
a given pair of cell types, spots or regions of interest were excluded 
if fewer than 20 cells of these cell types were present in that area. In 
the Schuerch et al. dataset (ref. 28), mean Ki67 intensity per TMA spot 
was assessed and outlier spots with suspected artificial high Ki67 
expression were removed (mean Ki67 intensity > 100, n = 33). Ki67 
intensity was log2-transformed and a cutoff for Ki67-positivity calling 
was calculated for each spot by the formula: mean +1.5 standard devia-
tions. In the Zhang et al. dataset (ref. 29), to increase comparability to 
the other studies that used regions of interest or TMA spots rather 
than large whole-slide samples, each of the eight samples was ran-
domly segmented into regions of interest with 20,002 µm2 (n = 100). 
Cutoffs for Ki67-positivity calling were manually chosen for each 
sample. In the Blise et al. dataset (ref. 30), regions of interest (n = 46, 
area = 25,002 µm2) and Ki67-positivity calling were used as defined 
by the authors.

Ligand–receptor interactions
To test for ligand–receptor interactions in the associations shown in 
Fig. 5a and Supplementary Fig. 13, we grouped the cells with a score > 1 
in each node (that is, the cells that contributed to the association) 
and ranked the genes in these cells according to mean expression. We 
checked for existence of known ligands or receptors in the top 4,000 
ranked genes in each node with paired receptors or ligands in MP genes 
of connected nodes (Supplementary Table 13). The list of putative 
ligand–receptor pairs was taken from Ramilowski et al.40.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
This work relied on curation and integrative analysis of external stud-
ies and did not involve generation of new primary data. The curated 
data from 71 studies are available at https://www.weizmann.ac.il/
sites/3CA, including the primary datasets and results of multiple 
downstream analyses. Datasets from one curated study (PDAC study by 
Chan-Seng-Yue et al. 2020 (ref. 41)) are available only through EGA with 
accession code EGAS00001002543 (permissions for sharing through 

3CA were denied). Additional datasets from unpublished studies will 
be added when possible.

Code availability
The code for generating MPs and inferring MP distribution across and 
within samples in a study (Extended Data Fig. 11) is provided in https://
github.com/tiroshlab/3ca/tree/main/ITH_hallmarks. Additional code 
for downstream analysis will be provided in the future in the 3CA web-
site and through GitHub (https://github.com/tiroshlab/3ca)42.
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Extended Data Fig. 1 | Genes and functional annotations of malignant MPs. 
(a) Heatmap showing NMF scores for all MP genes (rows) across all robust  
NMF programs (columns, arranged as in Fig. 2a). Dashed lines separate the 
genes of different MPs; MP numbers (right) and selected genes (left) are 

indicated. (b) Significance (-log10(FDR)) of the enrichment of selected 
functional annotations (columns) for all of the MPs (rows, ordered as in a). 
Annotations are colored by their database origin, as indicated (right legend). 
See Table S3 for additional functional annotations.
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Extended Data Fig. 2 | MP regulators inferred by SCENIC. (a) Heatmap showing 
the mean correlations between regulon scores and MP scores (correlations 
were calculated separately within each sample, and then averaged across 
samples). Regulons were included if they had a consistent association with at 
least one MP, defined as correlation above 0.5 (or below −0.5) in at least 10 

samples or in at least 30% of the samples with that MP (see Table S6 for a list of 
such regulons). (b) Distributions of the correlations whose means are shown  
in a for selected regulons associated with nine MPs (each shown in a separate 
panel). ex., extended.
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Extended Data Fig. 3 | Genetic subclones explain limited variability in MP 
expression. (a-b) CNA patterns for two samples from the Lee et al. 2020 
colorectal study, in which 3 and 2 subclones were detected, respectively.  
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sample SMC18, none of the MPs was significantly different between subclones. 
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whiskers respectively extend to maximal and minimal values which are no 
further than 1.5 times the interquartile range from the 3rd and 1st quartiles.  
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Extended Data Fig. 4 | Associations of MPs with genomic alterations in 
TCGA data. (a-b) Heatmaps showing significant associations between MP 
scores (columns) and mutations or focal amplifications/deletions (rows), 
colored by the cancer types in which they were observed, or in red if observed 
in multiple cancer types. Panels separate positive and negative effects, that is, 
associations where the difference in score between tumors with and without a 
given genomic alteration is positive or negative, respectively. Significance 
levels were computed by two-sided t-test and adjusted by Benjamini- 
Hochberg correction. Exact p values are shown in Table S7. (c-d) Same as  
a-b for chromosome arm gains and losses. (e) Boxplot showing scores (Y-axis)  
for the Interferon/MHC-II (I) meta-program in HNSCC tumors (points, n = 480 
biologically independent samples), comparing CASP8-mut tumors, or CASP8-
mut/HRAS-mut/TP53-wt tumors, with all others (X-axis). Significance levels 
were computed by two-sided t-test, without adjustment. Boxes indicate the 
median and 1st and 3rd quartiles, while the upper and lower whiskers respectively 
extend to maximal and minimal values which are no further than 1.5 times the 
interquartile range from the 3rd and 1st quartiles. (f) Boxplot showing scores 
(Y-axis) for the Interferon/MHC-II (I) meta-program in LUAD tumors (points, 
n = 492 biologically independent samples), comparing tumors with and without 
STK11 and KEAP1 mutations, respectively. Significance levels were computed 
by two-sided t-test, without adjustment. Boxes and whiskers are defined as in e. 
(g) Boxplot showing scores (Y-axis) for the PDAC-classical meta-program in 
NSD1-mut and NSD1-wt HNSCC tumors (points), first amongst all HNSCC tumors 
(n = 480 biologically independent samples), then separately for non-laryngeal 

and laryngeal tumors (n = 373 and n = 107 respectively). Significance levels were 
computed by two-sided t-test, without adjustment. Boxes and whiskers are 
defined as in e. (h) Boxplot showing scores (Y-axis) in NSD1-mut and NSD1-wt 
HNSC tumors (points, n = 480 biologically independent samples) for three 
MP30-related gene-sets: those specific to the Mucinous LUAD tumors, those 
specific to Classical PDAC tumors, and those shared between Mucinous LUAD 
and Classical PDAC tumors. Significance levels were computed by two-sided t 
test, without adjustment. Boxes and whiskers are defined as in e. (i) Histogram 
of scores for the Glutathione meta-program in KIRC tumors (n = 532 biologically 
independent samples). The dashed red line indicates the chosen threshold  
of −1, used to define Glutathione-low and -high populations. ( j) Bar plot  
showing the percentage of KIRC tumors (Y-axis) in Glutathione-low and -high  
categories (color) having alterations in VHL, PBRM1 and CDKN2A genes 
(X-axis). Significance levels were computed by two-sided Fisher test, without 
adjustment, and the notation ‘*’, ‘**’ and ‘***’ indicates p < 0.05, p < 0.01 and 
p < 0.001, respectively (exact p-values are 0.00064, 0.0025 and 0.020 for the 
VHL, PBRM1 and CDKN2A comparisons, respectively). (k) Kaplan-Meier plot 
comparing survival probability (Y-axis) across time (X-axis) between KIRC 
tumors in Glutathione-low and -high categories (color), with p-value computed 
by log-rank test. Error bands represent 95% confidence intervals. (l) Boxplot 
comparing the average scores for the G1/S and G2/M MPs (Y-axis) between KIRC 
tumors (points, n = 532 biologically independent samples) in the Glutathione-
low and -high categories (color), with P-value computed by two-sided t-test. 
Boxes and whiskers are defined as in e.
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Associations of MPs with clinical features in TCGA 
data. (a) Heatmap showing the hazard ratio of scores for MPs (rows) with 
respect to overall survival in each cancer type (columns). Purple and green 
represent association with worse and better survival, respectively. For relevant 
carcinoma types, the columns of results from data deconvolved by CIBERSORTx 
are presented with the suffix “(d)”, adjacent to the corresponding column for 
non-deconvolved data. Significant associations are labelled with ‘*’ for p < 0.05, 
‘**’ for p < 0.01 and ‘***’ for p < 0.001. Significance levels were computed via Cox 
regression and likelihood ratio test, and adjusted by Benjamini-Hochberg 
correction. Exact p values are shown in Table S8. (b-c) Heatmaps as in a showing 

the difference in average scores between tumors stratified by lymph node 
metastasis and therapy resistance, respectively. Significance levels were 
computed by two-sided t-test and adjusted by Benjamini-Hochberg correction. 
Exact p values are shown in Table S8. (d) Scatterplot showing consistency of 
associations of MPs with clinical features in TCGA data. Each point represents 
an MP, its X-value being the sum of the signs (1 for positive effect, −1 for negative 
effect) of all significant effects (adjusted p value < 0.05, with adjusted p values 
as in a-c) for that MP across all cancer types and clinical features, and its Y-value 
being the sum of the signs of all effects for that MP. Selected points are labelled 
with their corresponding MPs.
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Extended Data Fig. 6 | Experimental validation related to EpiSen and 
PDAC-classical MPs. (a) Example of EpiSen in HNSCC (SPRR1B+) with the 
senescence-associated secretory-like phenotype (SLPI+) (representative 
image from 3 independent experiments). (b) The PDAC-classical MP 
(panCK+TFF1+) is also observed in other cancer types such as invasive 

mucinous lung adenocarcinoma (also shown in Fig. 3e). In both PDAC and 
invasive mucinous lung adenocarcinoma, subsets of cancer cells expressing 
TFF1 are spatially zonated (representative images from 4 independent 
experiments per cancer type).
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Extended Data Fig. 7 | Observed vs. expected distribution of MPs across cancer types. Similar plots as in Fig. 3a for the TME cell types. See Methods for exact 
definitions.
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Extended Data Fig. 8 | Jaccard similarity between MPs of malignant cells and TME cells. Similar to Fig. 4b for the remaining non-malignant cell types. The most 
significant overlap was observed for MPs of the cell-cycle, stress, interferon and MYC.



Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Dissimilarities within MPs across different cancer 
types and cell types. (a) Comparing the EMT-II MP between PDAC samples and 
samples from other cancer types. For each gene, the correlation with the MP 
scores were calculated in each sample with the MP, and those correlations are 
compared between PDAC and non-PDAC samples, showing their mean (X-axis) 
and significance (Y-axis). Red and blue reflect genes with significantly higher  
or lower MP correlations in PDAC, respectively, calculated by a two-sided t-test 
adjusted by Benjamini-Hochberg correction. (b) Same as a, but instead of 
correlation with MP, the measure for each gene in each sample is the differential 
expression (log-ratio) between cells with MP score above 1 and those with  
score below 1. (c,d) heatmaps corresponding to a and b that show the actual 
correlation or differential-expression values across the PDAC samples (to the 
left of the black vertical line) vs. the other samples, showing genes that were 
high in both approaches (above the dashed line) vs. genes that were low in both 

approaches. The genes in both heatmaps are the same but are sorted 
differently (in decreasing order according to their average in PDAC samples). 
(e) The overlap between MHC-II or Interferon related MPs from different cell 
types and several curated gene-sets. The only MP with considerable overlap  
to both MHC-II and Interferon response came from cancer. (f) NMF scores of 
samples that participated in e averaged according to cancer type. Grey indicates 
missing values. (g) Average expression of MHC and interferon response genes 
(rows) across samples (column) in which the Interferon/MHC-II(I) MP was 
detected. In each sample, the expression was averaged only among cells that 
scored above 1 to the MP. Samples are sorted by the average difference between 
MHC-II and Interferon genes. Genes above the top broken line reflect MHC-I, 
genes between the broken lines reflect MHC-II, and genes below the bottom 
broken line reflect Interferon response.



Extended Data Fig. 10 | Coupling and decoupling of MHC-II and Interferon 
response. In malignant cells, MHC-II and interferon response are often 
co-expressed, unlike in non-malignant cells where they are uncoupled  
(e.g. asterisks in a, right panel in d). Cancer cells co-expressing MHC-II and 
interferon response frequently form an expression gradient in which the 

cancer cells co-express both markers on a continuum (upper panels in a and b; 
panel c; left panel in d). T cells often cluster around cancer cells with high 
expression of interferon response and MHC class II (left lower panels in a; left 
lower panel in b; left and middle lower panels in d) (representative images from 
3 independent experiments per cancer type).
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Extended Data Fig. 11 | MP distribution across the Puram 2017 HNSCC study. 
(a) Pie chart depicting the proportions of malignant cell assignment to malignant 
MPs combining all samples in the study. Each cell was assigned to a single MP to 
which it scored the highest (given that the maximal score was larger than 1). 
MPs with total proportions of less than 5% (across the whole study) are not 
shown. (b,c) Two examples for the MP distribution across samples (samples  

26 and 25, bar plots). Heatmaps show the expression of the MPs per sample, 
with the MP genes in the rows and cells in the columns. Legend lists all MPs that 
had a maximal score above 1 in at least 5% of the cells in at least one sample 
(including samples not shown). See Methods (and code availability) for exact 
definition and code.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Data was downloaded and further curated using custom code written in R (version 4.1.1). We used a custom approach for initial data filtering 
and preprocessing as described in more detail in the Methods.  
Custom code is available on Github in https://github.com/tiroshlab/3ca/tree/main/ITH_hallmarks

Data analysis We used open source code and software for some of the analysis: we used SCENIC ersion 1.3.1 for inferring gene regulators, inferCNA for CNA 
analysis (https://github.com/jlaffy/infercna), Cytoscape version 3.9.1 for graph visualization, the 'NMF' R package (https://cran.r-project.org/
web/packages/NMF/index.html) and QuPath version 0.3.2 for analyzing IHC slide images. We used custom written code using R version 4.1.1 
for multiple analyses, including  standard QC steps, cell annotations, clustering, visualization, MP-generation. Relevant code can be found on 
github in https://github.com/tiroshlab/3ca/tree/main/ITH_hallmarks    

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All curated data is available at (https://www.weizmann.ac.il/sites/3CA), aside from samples from unpublished studies that will be added when possible or cases in 
which sharing permission from the authors was denied.

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender We used mainly published data, as described above, which included samples from males and females. To our knowledge, the 
data was not deliberately enriched for a particular sex in none of the studies, and other than specific cancer types which are 
sex specific (e.g. breast cancer or prostate cancer), the data was evenly distributed. We included any available metadata, 
including sex, for each sample, which is provided in the 3CA website. 

Population characteristics Similar to sex, we made major efforts to include other sample information, including age, treatment status and more. All 
collected information can be found on the 3CA website. 

Recruitment We prioritized high quality and available data for our analysis. Although we put major efforts to obtain data from a variety of 
tumor types, there are some types that are under-represented in our compendium (e.g. endometrial cancer or gastric 
cancer). Hence, we will be able to generalize our findings to these types after accessing the relevant data (work in progress).  

Ethics oversight Ethics protocols were typically obtained by the original authors. For unpublished data that was sequenced by our lab or 
collaborators we used....For the sample sections used for the IHC staining experiments we used.... 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We curated 1163 samples from 77 studies. Following QC, we typically used all available samples within each study. Depending on the question 
we tried to address, analyses were performed within each study, across samples from the same cancer type, or across samples that 
participated in each MP. 

Data exclusions We excluded several samples in which the malignant cell annotations were questionable, based on pre-established criteria for CNA signal and 
correlation, as described in the Methods. After generating MPs, we also excluded a few programs that were enriched with low quality genes 
(ribosomal or mitochondrial). 

Replication We believe that our findings are highly reproducible. First, our definitions for MPs were derived using a very large dataset that was sequenced 
by dozens of different groups using different methods. We used standard IHC staining in multiple samples of different cancer types to validate 
some of our findings, and also further validated our findings using published CODEX and VISIUM data, and TCGA data. 

Randomization Randomization was not relevant to our study since we aimed to infer ITH in an unsupervised manner based on a large compendium of 
available published data. We prioritized studies which utilized high quality data according to our judgment and that sequenced many samples. 
We put special effort to include also rarer cancer types, which resulted in 24 cancer types altogether.  

Blinding Blinding was not possible or relevant in this study since we did not perform a clinical trial or any other experiment/analysis that might require 
blinding, but rather curated all scRNAseq data that was published as part of other studies and available to us. 
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Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used We used antibodies for our IHC validation experiments (Table S15): 

- mouse anti-human MHC class II; Abcam; ab55152; donkey anti-rabbit Cy3;Jackson; 711-165-152 
- rabbit anti-human ISG20; Abcam; ab154393; donkey anti-goat AlexaFluor 647; Jackson; 705-605-003 
- goat anti-human SMA; LSBio; LS-b3933-50; donkey anti-rat AlexaFluor 647; Jackson; 712-605-150 
- goat anti-human p63; R&D; AF1916; donkey anti-goat Cy3; Jackson; 705-165-003 
- rat anti-human CD3; LSBio; LS-B8765-50; donkey anti-rabbit FITC; Jackson; 711-095-152 
- goat anti-human EPCAM; Millipore; AF960; donkey anti-mouse FITC; Jackson; 715-095-150 
- rabbit anti-human TFF1; Abcam; ab92377 
- mouse anti-human pan-cytokeratin; Abcam; ab86734 
- rat anti-human MECA79 ; NovusBiologicals; NB100-77673 
- rabbit anti-human C3; Abcam; ab97462 
- rabbit anti-human SLPI; Invitrogen; PA582990 
- rabbit anti-human SPRR1B; LSBio; LS-C161474-400 
- mouse anti-human LAMC2; Novus Biologicals; NBP2-42388 
 

Validation Below we include respective information on antibody, cat. number or clone, manufacturer, species, expected expression and 
validation information: 
1) Pan -Cytokeratin; ab234297; Abcam;  rabbit; epithelial, cancer; tested in human skin tissue by Abcam, tested in tumor-adjacent 
normal epithelium in HNSCC by us 
2) EPCAM;  AF960; Millipore; goat; epithelial, cancer; tested in PDAC, HNSCC, and tumor-adjacent normal epithelium by us 
3) p63 ;AF1916; R&D; goat; squamous, cancer; tested in human breast by R&D, tested in HNSCC by us 
4) SLPI; PA582990; Invitrogen; rabbit; epithelial, cancer; tested in human cervix, uterine, and skeletal muscle by Invitrogen, tested in 
HNSCC by us 
5) SPRR1B; LS-C161474-400; LSBio; rabbit; epithelial, cancer; tested in human breast carcinoma by LSBio, tested in HNSCC - by us 
6) ISG20; ab154393; Abcam; rabbit; immune; tested in non-Hodgkin's lymphoma and tumor xenograft  by Abcam,tested by us in 
human lymph node 
7) CD31; ab9498; Abcam; mouse; endothelial; tested in human tonsil and lung by Abcam, tested in human placenta by us 
8) C3; ab97462; Abcam; rabbit; immune tested in mouse brain by Abcam, tested in human lymph node and tonsil by us 
9) CD3; LS-B8765-50; LSBio; rat; T cell; tested in human thymus by LSBio, tested in human lymph node, tonsil, and spleen  by us  
10) aSMA; LS-b3933-50; LSBio; goat; myofibroblast/CAF; tested by us in human spleen and placenta 
11) TFF1/Anti-Estrogen Inducible Protein pS2;  ab92377; Abcam; rabbit; mucosal glands/goblet cells, cancer; tested in human breast 
and ovarian carcinoma by Abcam, tested in PDAC by us 
12) MHC class II; ab55152; Abcam; mouse; immune; tested in human bowel tissue by Abcam, tested in  human lymph node by us 
13) MECA79; NB100-77673; Novus Biologicals; rat; high endothelial venules (HEVs); tested in lymph node and tonsil by Novus, tested 
in human tonsil by us 
14) LAMC2; NBP2-42388; Novus Biologicals; mouse; pEMT (cancer), ECM; tested in fallopian tube and liver by Novus, HNSCC in 
Puram et al. 2017 https://doi.org/10.1016/j.cell.2017.10.044 
 
 

Eukaryotic cell lines
Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or 
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.
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Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for 
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

Name any commonly misidentified cell lines used in the study and provide a rationale for their use.

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals We used a few published mouse and PDX models, as described in Table S1: Ebinger et al 2016 (ALL PDX models), Ireland et al 2020 
(SCLC mouse model), Yao et al 2020 (ESCC mouse model), and unpublished GBM mouse model 

Wild animals The study did not involve wild animals. 

Reporting on sex We used mainly published datasetes, as described above, which included samples from males and females. To our knowledge, the 
data was not deliberately enriched for any sex in none of the studies, and other than specific cancer types which are sex specific (e.g. 
breast cancer or prostate cancer), the data was evenly distributed. We included any available metadata, including gender, for each 
sample, which is provided in the 3CA website. 

Field-collected samples This study did not involve samples collected from the field. 

Ethics oversight In most cases we used published data that did not require further ethical approval.  
For unpublished data that was sequenced by our lab or collaborators we used... 
For samples used for IHC staining we used.... 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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